
ff) Pergamon

0020-7683(94)00105-7

Int. J. Solids Structures Vol. 32, No.2, pp. 235--249, 1995
Copyright (0 1994 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0020--7683/95 $9.50 + .00

ANALYSIS OF THIN-WALLED ANISOTROPIC
FRAMES BY THE DIRECT STIFFNESS METHOD

EMMANUEL COFIEt and LAWRENCE C. BANK
Department of Civil Engineering, The Catholic University of America, Washington, DC

20064, U.SA

(Received 28 July 1993; in revised/arm 29 April 1994)

Abstract-The stiffness matrix for a one-dimensional beam element for use in a direct stiffness
matrix method for analysing thin-walled anisotropic frames is presented in this paper. Thin-walled
beams are widely used as structural components and stiffeners in aerospace and civil engineering
applications. The stiffness matrices for two 2-noded 12 degrees of freedom beam elements, one of
which accounts for warping and anisotropic coupling only and called a "warping superelement",
and the other a "non-warping element", are developed numerically. The warping superelement is
used in the region of the beam where warping is considered critical. The length of this region, which
is dependent on the geometric and mechanical properties of the beam cross-section, is determined
using a technique that utilizes equivalent one-dimensional mechanical properties of the composite
material panels in the cross-section. The non-warping element is used outside of this critical region.
Numerical examples of a thin-walled space frame structure are presented to demonstrate the use of
the beam model. Results obtained using the proposed model are compared with numerical results
obtained from 2-D finite element analysis.

INTRODUCTION

In recent years, thin-walled anisotropic composite material profile sections have been
developed for structural components in the civil, mechanical and aerospace industry. Light
weight, high resistance to corrosion, high strength to stiffness ratios and aeroelastic tailoring
capabilities are some of the reasons for the development. Often it is necessary to analyse
frameworks consisting of an assemblage of open-section thin-walled structural members.
In most commercial structural analysis computer codes only St Venant torsion is considered
in the beam models, It is a well known fact, however, that warping torsion is significant in
constrained beam members and should be taken into account. The presence of warping
(Vlasov, 1961; Gjelsvik, 1981; Cofie, 1993a) tends to present a difficulty in the analysis of
thin-walled isotropic structures. The problem becomes even more complex with anisotropic
structures. The presence of anisotropic coupling responses (Bank 1990; Cofie, 1993a,b;
Bank and Cofie, 1992, 1993), normally not encountered in isotropic thin-walled structures
becomes a major concern. These anisotropic coupling responses result in behaviors not
observed in isotropic structures. The application of, say, an in-plane load not only generates
an in-plane response (observed in isotropic structures) but also an out-of-plane response
of the structure. This out-of-plane response presents a problem when one considers the
concept of plane frame or beam analysis based on the assumption that the structure remains
in a two-dimensional plane, valid for isotropic structures. Use of a two-dimensional model
is not possible. In order, therefore, to accurately analyse a thin-walled anisotropic composite
frame, one needs to utilize a model that predicts responses in three-dimensional space,
rather than that which predicts responses in a two-dimensional plane. Most traditional
structural analysis codes developed for isotropic materials in which coupling is known to
be absent, cannot be used to analyse anisotropic thin-walled composite structures. Due to
the presence of coupling effects, the analysis of thin-walled anisotropic structures are
currently usually performed using finite element packages that utilize either composite plate
or shell elements (NASTRAN, 1986; NISA, 1990), which demand large storage space and
tend to be very expensive,
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Prior attempts made at developing one-dimensional beam models based on the finite
element formulation for the analysis of thin-walled anisotropic structures, to account for
warping and anisotropic coupling, have included additional degrees of freedom (d.o.f.) to
the "normal" 6 d.o.f. to account for the warping related deformation. Pioneering work on
anisotropic structures was carried out by Mansfield and Sobey (1979) on a general aniso­
tropic two cell thin-walled tube subjected to longitudinal tension and torsion. Rehfield
(1985) presented a simplified beam model in which a 7 x 7 stiffness matrix relating the
generalized internal forces to the generalized strains was developed, with two non-classical
influences, transverse shear deformation and torsion-related warping included. The litera­
ture pertaining to the development of one-dimensional beam models for the analysis of
thin-walled anisotropic composite structures based on the Vlasov theory is limited. Bauld
and Tzeng (1984) presented a linear theory based on an extension of the Vlasov theory to
anisotropic structures, in which the presence and effects of coupling were examined. Gupta
et al. (1985) developed a one-dimensional 16 d.o.f. beam model for the analysis of aniso­
tropic thin-walled composite structures without any restrictions on the lamination scheme.
Hong and Chopra (1986) extended a one-dimensional 15 d.o.f. beam model developed by
Sivaneri and Chopra (1984) for isotropic rotor blades, to enable the treatment of composite
rotor blades. Stemple and Lee (1988) presented a one-dimensional beam finite element
model in which additional nodes were introduced to account for warping. Nagarajan and
Zak (1985) and Zak (1987), in addition to discussing the limitations of existing finite
element models, also presented a beam model for the analysis of orthotropic composite
beams without warping. Chandra and Chopra (1991) using a Vlasov type linear theory
presented a 14 d.o.f. beam model for the analysis of composite I-beams with elastic coup­
lings. The effects of warping were included directly by extending the Vlasov differential
equations of torque equilibrium to the classical lamination theory of composite plates. In
an effort to provide a simplified one-dimensional beam theory for preliminary design,
Bank (1990) presented a modified beam theory for the analysis of anisotropic thin-walled
composite beams. This model was confirmed numerically by Bank and Cofie (1992), and
experimentally by Smith and Bank (1992). The objective here was on simplicity and easy
desk-top calculations. Bank and Cofie (1992) in another paper presented a more realistic
model of a thin-walled composite beam. The distinctive feature of these studies was their
ability to isolate and estimate theoretically, the out-of-plane displacements associated with
thin-walled composite beams, and further verify them by 2-D finite element results and
experimental results. Warping was not considered, since torsional loading was not con­
sidered in these models.

The current paper presents two 2-noded 12 d.o.r. beam elements; one is called a
"warping superelement" and the other is called a "non-warping element" for the analysis
of thin-walled anisotropic framed structures to include the effects of warping and
anisotropy. The numerical development of the stiffness matrices is outlined and their
application to the analysis of anisotropic thin-walled framed structures is described.

STIFFNESS MATRIX DEVELOPMENT

To account for the effects of warping and anisotropy, the model described by Cofie
(1993a) for isotropic beam elements was extended to include anisotropy and used for the
development of the element stiffness matrix. Numerical techniques were used as opposed
to variational methods (Cofie, 1993b). The beam was divided into two regions, a warping
region, and a non-warping region. The element in the warping region is called a "warping
superelement", because the terms in the stiffness matrix directly include the effects of
warping. The concept of warping and non-warping regions is due to the well known fact
that thin-walled sections develop non-uniform warping related stresses at restrained ends
and load application points of the beam (Gjelsvik, 1981) which tend to decay at an
exponential rate. Consequently, the region close to the restraints, called the "critical region",
can be assumed to be under non-uniform torsion while those further away from the
restraints can be assumed to be subjected to pure torsion only. The length of the critical
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region establishes the governing criterion for numerically generating the element stiffness
matrices. Two-dimensional finite element discretizations were used to assemble the two
12 x 12 element stiffness matrices for the anisotropic thin-walled beam section. The force
method of analysis where unit loads are applied to the free end of the cantilever beam was
used and the stiffness matrix obtained from the numerical inversion of the flexibility matrix.
This approach allows for warping displacements to be clearly specified. Prior to assembling
the element stiffness matrices, the boundaries of the different regions within the beam
member and the length of the warping region (the critical length) are determined.

The critical length
The estimation of the length of the warping influenced region (critical region) of the

anisotropic beam is based on an approximate technique, proposed by Cofie (l993a) for
isotropic beams. In that paper the torsional stiffness term, based on the Vlasov theory is
given as,

where

[
tanh (:xL) ] GJ

St = 1+ -,
:xL-tanh (:xL) L'

:x = JE~:n
J = 1(3 ds

Inn = f 4(wo _W)2 dA
A

(I)

(2)

and E is the Young's modulus; G, the shear modulus; J the St Venant torsion constant;
Inn the warping constant; wand wo, the sectorial areas; A, the cross-sectional area; and L,
the length of the beam element. Equation (I) consists of two expressions, one representing
the contribution of the St Venant torsional stiffness and the other the warping stiffness.
Additionally it can be seen that the expression related to the warping effects is a function
of the factor (XL, and that this expression decays rapidly as:xL increases (or as L increases),
as one moves away from the warping restrained end of the beam. Another interpretation
of this expression is that, at points very close to the restrained end, the beam tends to
develop a Vlasov stiffness, while at points further away, the beam tends to approach a St
Venant torsional stiffness. In light of this behavior, it is assumed that elements close to the
torsionally restrained end of the beam develop Vlasov stiffness, while elements further away
will develop St Venant stiffness.

At this point the typical thin-walled beam can be considered to consist of two regions:
a region that contains the warping superelement and a region that contains the conventional
beam elements. The only difference between the elements in these two regions is with respect
to their torsional stiffnesses. The element in the warping region is called a superelement
because its torsional stiffness terms directly account for warping, in addition to 5t Venant
torsion. One can visualize the concept as one of having to condense the warping (non­
uniform torsion) response of this entire region into one big element which is called the
"superelement" that can be used in a linear analysis. It should be noted here that only a
single warping superelement can be used in the warping region (called the "critical region"),
whereas as many elements as desirable can be used outside of the critical region. This is
due to the fact that the torsional behavior in the critical region is non-uniform, whereas the
region outside of the critical region exhibits uniform torsional behavior (St Venant torsion).
In addition to restrained ends, warping effects are known to be significant in the regions
around the point of application of a torsional load, according to Vlasov (1961), unless free
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warping is allowed to take place at the point. Warping superelements may therefore be
required at these points in addition to the beam ends.

The term "superelement" used in this paper differs from that used in some commercial
finite element codes. The term "superelement" is used in most finite element codes in relation
to substructuring, where the full structure is divided into modules called substructures or
superelements, each substructure capable of being analysed independently using the same
theory (NASTRAN, 1986). The term "superelement" in this study refers to an element
with reduced d.oJ. at the nodes and whose responses are only obtained at the nodes at the
ends of the superelement. In order to obtain responses of intermediate points within the
superelement, a separate analysis must be used. It should be noted that the superelement
developed in this work cannot be simply obtained by using a superelement substructuring
technique in a finite element code.

The length of the critical region, which defines the length of the warping superelement
is dependent on the geometrical and mechanical properties of the section. The torsional
stiffness term of eqn (l) can be written in terms of the contributing terms as

(3)

where Sv and Sw are the contributions from the St Venant and warping torsion, respectively.
For the case of pure torsion, the torsional stiffness term is given by

(4)

The ratio of these two torsional stiffnesses, eqns (3) and (4), denoted by ~, can be written
as

~ = Sv = [1- tanh (O(L)J.
St O(L

(5)

At this point a threshold value of this ratio can be defined, ~c. Beyond ~c, the beam is
considered to be under St Venant torsion. This threshold value defines the length of the
critical region and in effect the length of the warping superelement. Writing eqn (5) in
inequality form gives

tanh (O(L) ~ [1-~c](O(L). (6)

Solving the above transcendental eqn (6) gives the length of the critical region, the point
beyond which the assumption of the pure St Venant torsional stiffness approximation will
be acceptable. The functions on either side of the inequality (6) are plotted as a function of
(O(L) in Fig. 1. The plot shows the two expressions on each side of eqn (6) for different
values of~. Points to the right of the intersection of the two curves give acceptable solutions
to eqn (6). Notice the shape of the curve of the function on the left hand side of the
inequality. It has a nonlinear and a linear part. The nonlinear part of the curve represents
the region of the beam where the warping effect is critical, while the linear part represents
the region of the beam where the warping effect is insignificant. This implies that beyond a
certain point on the beam, the effects of warping are so insignificant as to not affect the
overall torsional response of the structure. In practical terms, increasing the value of ~,

which corresponds to a point further down the linear part of the left hand side curve, is
equivalent to increasing the degree of accuracy of the results. Efficiency and cost will
however impose practical limitations on the degree of accuracy and thus on ~. Typically,
acceptable values of ~c are determined from the linear region of the curve. For any given
~, the corresponding value of (O(L), which is unique, can be obtained from the graph. The
advantage of using Fig. 1 is that it is a universal figure and can therefore be used to
determine the critical length of any arbitrarily shaped thin-walled open section. With the
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value of IY. obtained from eqn (2), the length of the superelement can be determined. The
larger the value of A, the longer the length of the warping superelement. Since only a single
superelement can be used in the critical region, it is advantageous to use the smallest length
possible, without sacrificing too much accuracy. Moreover, since responses of points within
the superelement have to be obtained from a separate analysis, it is in the interest of the
analyst to choose a warping superelement that is as small as possible, so as to obtain as
much information as possible on the response of the beam at this stage of the analysis.
Figure I shows that a value of Ac of 0.5, cuts the curve just at the beginning of the linear
region. This gives a value of IY.L ~ 2 from eqn (6). The length of the critical region and thus
the length of the superelement (Lc) is therefore

2
L c =-.

IY.
(7)

Equation (7), which was developed for isotropic beams is extended to account for
anisotropic beams. To simplify and thereby reduce the complexity of the derivations
involved, basic assumptions pertaining to the behavior ofanisotropic thin-walled structures,
parallel to those used in isotropic thin-walled structures are made. The basis for the
assumptions is due, in part, to the fact that in the one-dimensional analysis of laminated
composite beams, the use of effective stiffness properties of the laminate along the beam
axis to characterize the one-dimensional behavior of the beam is common (Vinson and
Sierakowski, 1987; Whitney, 1987). In addition, Noor et al. (1991) and Bank (1990) have
demonstrated that sufficiently accurate results could be obtained using effective properties.
For the laminates discussed in this paper effective one-dimensional mechanical properties
were derived. These effective properties were then used to determine the approximate length
of the critical region for anisotropic thin-walled structures.

Effective one-dimensional properties
Consider the anisotropic thin-walled beam shown in Fig. 2 constructed from laminated

panels and subjected to a twist (torsional deformation). Define the laminate's axes as the
1-2 axes with the I-axis parallel to the beam x-axis (longitudinal axis). Notice that the
orientation of the 2-axis depends on whether the panel is parallel to the y- or z-axis. In
order to ensure clarity the subscript i is used to denote the ith panel (i = t, c, b for top,
center and bottom). Following assumptions similar to those made in isotropic thin-walled
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Fig. 2. Local and global coordinate system for a typical beam element.

structures subjected to torsional deformation the only non-zero strain component developed
in the section is the shear strain C6' The components of strain in the normal directions (i.e.
Cl and C2) are zero, where 1 and 2 refer to the 1- and 2-axis of the panel, respectively. From
classical lamination theory of composite plates (Tsai and Hahn, 1980) the stress-strain
relationship of the ith panel in terms of its off-axis engineering constants can be written as

(8)

where E 1 and E2 are the in-plane longitudinal and transverse moduli in the I-I and 2-2
directions, E6 is the in-plane shear modulus, V1 2 and V21 are the in-plane Poisson's ratios, V\6

and V26 are the in-plane normal coupling coefficients, V6\ and V62 are the in-plane shear
coupling coefficients, c" C2 and C6 are the normal and shear strains, and (J b (J2 and (J6 are the
normal and shear stresses. Due to the presence of the normal-shear coupling ratios, the
normal stresses (J\ and (J2 are non-zero. Solving the first two rows of egn (8) in terms of the
shear stress (J6, the non-zero stresses are obtained as

(9)

(10)

Substituting egns (9) and (10) into the last row of egn (8) results in the following expression
which can be written as

V16(V62V21 +v6d+V26(V6\ V12 +V62 )] 6 6,.,

I-V2I VI2 ;E6 ,
(11)

(12)

where f3 is called the "transformation parameter" and is defined as
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(13)

The terms in the expression for f3 contain coupling and Poisson coefficients of panel i and
are different for each panel. For isotropic thin-walled beams f3 = 1. f3 has a scaling effect
on the effective in-plane shear modulus E6 of the panel. It is sensitive to the degree of
anisotropy of the panel. f3 transforms the effective shear modulus of the panel, E6, into an
equivalent one-dimensional shear modulus (G1-D). A new term, Gl -D , is introduced to
represent this equivalent one-dimensional shear modulus for the panel, defined as

(14)

For a unidirectional or cross-ply laminate the normal and shear coupling coefficients are
all zero. f3 becomes unity and eqn (14) yields the effective shear modulus, E6• In the case of
the one-dimensional longitudinal modulus, the Poisson effects are typically small and can be
neglected (Gjelsvik, 1981) and the one-dimensional longitudinal modulus, E 1_D is assumed to
be equal to the in-plane modulus, E 1. Having obtained Gl-D and E1-D , the length of the
critical region is determined using the same procedure outlined for isotropic sections given
by eqn (7). For the case of a beam in which the panels have different G1-D 's and E1_D'S,

a transformed section method similar that used for nonhomogeneous materials is used
(Timoshenko, 1965) with IX now given as

(15)

where the superscript t refers to the transformed section.

The "warping superelement" stifjiwss matrix
To obtain the warping superelement stiffness matrix, a beam element of length equal

to the critical length, L c is modeled using a finite element code with laminated composite
plate (or shell) elements. The beam cross-section is modeled with a number of elements
which gives many nodes (and d.o.f.) at each station along the length of the beam. Because
the cross-section of the beam has more than one node, the kinematic and static conditions
at these nodes have to be described in such a way as to effectively simulate or approximate
the one-dimensional beam model. This was achieved using master-slave node concepts
(Norris et al., 1976), in which kinematic constraints at the nodes were coupled through the
use of multi-point constraint (MPC) equations or rigidlinks. One advantage gained from
using the master-slave node concept was that loads could be applied directly to the end of
the beam via the master node. At the fixed end of the beam, all the displacements of the
slave nodes were coupled to the master node and all six displacements at the master node
set to zero. This description ensured zero displacements for all d.o.f. and therefore met the
condition of restrained warping. At the free end of the beam the axial displacements of the
slave nodes were intentionally uncoupled from the master node. This allowed unconstrained
displacement in the longitudinal direction of the nodes on the cross-section, thus allowing
for free warping of the cross-section. The load (i.e. stress-resultant) was applied to the
master node. Six cases were run corresponding to the six stress resultants at the end of the
beam, each case generating one column of the 6 x 6 flexibility matrix. The element stiffness
matrix was then obtained from the numerical inversion of the flexibility matrix. The
difference between this element stiffness matrix developed here and that of an isotropic
beam is that the element stiffness matrix of the anisotropic beam is fully populated, whereas
most of the off-diagonal terms of the element stiffness matrix of the isotropic beam are
zero. In order to get a sense of the effects of the anisotropic coupling coefficients on the

SAS 32-2-G
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element stiffness matrix, a schematic representation of the full stiffness matrix of the
anisotropic beam element is shown in eqn (16) :

x a a a a a x a a a a a

a x a a a x a x a a a x

a a x a x a a a x a x a

a a a x a a a a a x a a

a a x a x a a a x a x a

a x a a a x a x a a a x

x a a a a a x a a a a a

a x a a a x a x a a a x

a a x a x a a a x a x a

a a a x a a a a a x a a

a a x a x a a a x a x a

a x a a a x a x a a a x

(16)

The symbol "x" is used to indicate the non-zero terms in the matrix that also appear
as non-zero terms in the isotropic stiffness matrix, and "a" to indicate the anisotropic
coupling induced non-zero terms which never appear in the isotropic stiffness matrix. The
coupling responses are due to the presence of these non-zero terms.

The "non-warping element" stiffness matrix
The non-warping element stiffness matrix is also obtained numerically following a

similar procedure outlined for the warping superelement. Since the "non-warping element"
is independent oflength, any convenient length can be used. The difference in the numerical
determination being that the axial displacements of the slave nodes at both ends of the
beam are uncoupled from the master node, thus enabling both ends of the beam to warp.

NUMERICAL EXAMPLES

An example of a three-dimensional frame structure with the structural components
labelled Beam 1, Beam 2 and Column 1 shown in Fig. 3 is analysed to demonstrate the use
of the proposed model. The material chosen is graphite--epoxy, with orthotropic material
properties of E u = 181.0 GPa, Evy = 10.3 GPa, Ess = 7.17 GPa and vxy = 0.28. Beam I,
Beam 2, and Column 1 all have the same geometrical shape (I-shaped). The top flange, the
web and the bottom flange of the I-shaped sections of the beams or column are referred to
as top, center and bottom panels, respectively. The I-shaped sections all have the same
cross-sectional dimensions. The top, center and bottom panels are all 30 mm x 2 mm thick.
Beam I is 800 mm long, with the center panel parallel to the X- Y plane, Beam 2 is 1600
mm long, with the center panel parallel to the Y-Z plane, and Column I is 120 mm long,
with the center panel parallel to the Y-Z plane.

An identification terminology called the "Composite Structural Identification Pattern"
(CSIP), is introduced to describe the ply orientation, lamination stacking sequences and
the sequence of the panels forming the cross section of the thin-walled structure (i.e. top,
center and bottom panels). Ply orientation is defined relative to the longitudinal axis of the
panel being described (where a positive angle represents a counterclockwise rotation). Ply
orientations and lamination sequences are enclosed in small square brackets ([ ]), and the
CSIP is enclosed in big square brackets. Two examples with different CSIPs (CSIP 1 and
CSIP 2) were used to demonstrate the proposed procedure, the accuracy of the results and
to illustrate the phenomena of twist of the section without out-of-plane motion, and an
out-of-plane motion without a twist, a behavior demonstrated by Bank (1990) and Bank
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Fig. 3. Anisotropic thin-walled composite space frame.

and Cofie (1992) and later proved experimentally by Smith and Bank (1992) on one­
dimensional anisotropic thin-walled beams. For the example presented, only the "sig­
nificant" responses are illustrated and compared with 2-D finite element results. Significant
in this context refers to responses due mainly to anisotropic coupling. Rotations (total
twist) are mainly shown because these responses tend to be heavily influenced by restrained
warping, and thus the length of the critical region. The CSIP was the same for all three
members. The CSIP for the composite I-beam frame members were as follows:

[

[+30] 16 ]
CSIP 1 = [±30]4s ,

[ +30L6
[

[+30]16]
CSIP 2 = [±30]4s .

[ -30]16

The only difference between the CSIPs of the two beams is in the orientation of the
unidirectional plies in the bottom panel of the beam. The in-plane and effective I-D
mechanical properties of the CSIPs are given in Table 1. For the beam considered,
a = 1.65 x 10-2 and the critical length was found to be 121 mm. For convenience, a warping
superelement length of 100 mm was used, with the non-warping regions divided into lengths
of 100 mm. The element stiffness matrix of only a single non-warping element needed to be
obtained numerically. It should be noted that even though the length of the critical region
is unaffected by the change in CSIP, this change does affect the coupling induced response
of the frame. All supports were rigidly fixed. In addition, the ends of Beam 1, Beam 2, and
Column 1 were restrained against warping at their common junction. The I-D model of
the framed structure with the load cases is shown in Fig. 3.

For the finite element analysis model used to compare results to the proposed stiffness
method analysis, Beam 1, Beam 2 and Column 1 were modeled using 2-D laminated
composite general shell elements of quadrilateral shapes "Cquad4" (NASTRAN, 1986).
The top, center and bottom panels of Beam 1, Beam 2, and Column 1 were constructed
from these elements. A total of 12 elements were used to form each cross-section. Elements
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Table I. Mechanical properties

Laminates
Property [+30]10 [±30]4, [-30Lo

E,(GPa) 28.78 42.58 28.78
EiGPa) 12.48 13.30 12.48
Eo(GPa) 8.76 15.75 8.76

V21 0.226 0.666 0.226
VI2 0.098 0.203 0.098
VOl -1.351 0 1.351
VIO -0.411 0 0.411

"'62 -0.402 0 0.402
\'26 -0.283 0 0.283

E,_D(GPa) 28.78 42.58 28.78
GID(GPa) 36.60 15.75 36.60

in the connection region (the junction where Beam 1, Beam 2, and Column I meet) were
rigidly connected together through the use of rigidlinks, thus effectively restraining the
junction against warping. A total of 3600 elements were used. All responses are plotted
along the local longitudinal axis (local origin) of Beam I, Beam 2, and Column I. The local
origins are shown on Fig 2. Results were plotted for the neutral axis nodes (nodes along
the midpoint of the center panel), and nodes along the intersections of the top panel/center
panel (top flange/web) and center panel/bottom panel (bottom flange/web). To maintain
clarity, only angle orientations were indicated in the CSIPs shown in the plots.

Example I
A moment about the global X-axis M x = 1000 Nmm, was applied at the junction of

Beam I, Beam 2 and Column 1. CSIP I is used for the beams and column. Because of the
nature of the boundary conditions and loading, six warping superelements were required
for this load case, one at each of the three rigid supports and one each at the junction of
Beam 1, Beam 2 and Column 1. Thirty non-warping elements were used with a total of 36
elements required for this analysis. Plots of the rotation (total twist) of points along the
length of the longitudinal axis of Beam 2 and Column 1 are shown Fig. 4(a) and Fig. 4(b).
These are anisotropically induced coupling responses. These responses are not observed in
isotropic structures because the coupling terms are not present. Figure 4(c) shows a plot of
the rotation (total twist) of Beam 1 due to the load. This response was due to contributions
from the twisting moment on Beam 1 and the anisotropic coupling. It can be seen that in
all cases the results of the proposed procedure agree very well with results from the finite
element analysis (NASTRAN).

Example 2
A transverse force in the global Z-direction F z = 500 N was applied at the center of

Column 1. A total of eight warping superelements were required for this load case, one at
each of the three rigid supports and at the junction of Beam I, Beam 2 and Column I, and
two at the load application point in Column I. Both CSIP 1 and CSIP 2 are analysed. A
total of 36 elements were used. Plots of the anisotropic coupling induced rotations (total
twist) along the longitudinal axis of Beam 2 [Fig. 5(a) and (b)] and Column 1 [Fig. 5(c)
and (d)] are shown for CSIP 1 and CSIP 2. This confirmed the non-uniform response of
the structure in the critical regions. Comparing Fig. 5(a) with Fig. 5(b) for Beam 2, and
Fig. 5(c) with Fig. 5(d) for Column I, an interesting phenomenon is observed. No aniso­
tropic coupling induced twist took place in Beam 2 and Column 1 for CSIP 2, whereas
coupling induced twist was observed in CSIP I. This was simply due to the change in the
CSIP resulting in changes in the direction of the anisotropic coupling in the flanges. The
net effect of the change in direction for CSIP 2 is an out-of-plane displacement without
rotation. Figures 5(e) and (f) show the resulting out-of-plane displacement (U,) of Beam 2
and Column I for CSIP 2, respectively. The closeness of the results between the proposed
procedure and the finite element analysis is again very evident. Figure 5(g) is a plot of the
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transverse displacement of Beam 2 for CSIP 1. Again the closeness of the result with that
of the finite element results can be observed.

DISCUSSION

The above results emphasize the importance of recognizing the existence of aniso­
tropically induced coupling deformations and correctly accounting for them. Furthermore,
the potential for utilizing such behavior in design is potentially great if it is well understood.
However, one must caution that the possibility of catastrophic failures exit (particularly
in dynamic stability and buckling problems) if these effects are not well understood.
Torsional responses or torsional-induced coupling responses were primarily shown in the
above examples since in the design and analysis of thin-walled structures, combined warping
and coupling effects are most significant under torsional load. In isotropic thin-walled
structures it is easy to intuitively predict the presence and the direction of the coupled and
uncoupled responses. When one deals with anisotropic thin-walled composite structures,
one cannot intuitively predict the directions of the coupling induced responses and a
complete analysis of the structure is required. The examples demonstrate how sensitive the
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Fig. 5 (Continued). (c) CSIP I, rotation of Column I vs distance; (d) CSIP 2, rotation of Column
I vs distance.

coupling responses are to changes in CSIP. In addition to an intentional change in CSIP in
a particular design, a practical situation in which a change in CSIP could occur un­
intentionally could be during construction or in the analysis. In an anisotropic thin-walled
structure such "mistakes" could be fatal.

Another important fact to point out is the computational efficiency of the proposed
method. It took only a few seconds on a Unix workstation (Uitrix V4.2A, Dec 5000/133)
to perform the analysis of this space frame using the proposed procedure. It took > 3 h to
perform the same analysis using the Unix version of the NASTRAN finite element package
on the Unix workstation, and > 72 h using the PC version of NISA-II finite element
package on a 386/25 mHz/8 mB RAM computer. Even though additional time was needed
for the computation of the effective mechanical and geometric properties and the element
stiffness matrices for the warping and non-warping region, the efficiency gained from using
a small storage space, coupled with the simplicity of the proposed procedure makes it highly
attractive.

CONCLUSION

A one-dimensional 12 d.o.f. beam model for use in the direct stiffness method of the
finite element method for analysing anisotropic thin-walled structures has been proposed.
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The proposed procedure is simple, accurate and efficient. Only a few elements are required.
Warping superelements have been used to specify torsionally restrained conditions without
increasing the d.o.f. at the nodes. The numerical technique for developing the stiffness
matrices for the warping and non-warping regions of the anisotropic thin-walled beam is
accurate and very efficient. Numerical results show good agreement with the finite element
analysis. Anisotropic coupling responses have been shown to be significant in thin-walled
composite frames. The anisotropic responses are sensitive to changes in composite structural
identification pattern. Due to out-of-plane deformations, anisotropic thin-walled structures
must always be analysed as 3-D structures.
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